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COMBINING DATA FOR IMPROVED WEIBULL
PARAMETER ESTIMATION

by

S.B. Batdorf and G. Sines
School of Engineering and Applied Science, UCLA

ABSTRACT

Weibull parameters are often used by experimentalists to
characterize the fracture behavior of structural materials. Frequently
several different types of tests are performed, and theory indicates
that the parameters for each type should be the same, or have some
specific relation to each other. In such cases, it is advantageous to
combine the data to find the parameters best representing all the data.
The present paper discusses techniques for carrying out this objective
and analyzes two examples in detail to illustrate the principles involved.
The first example compares uniaxial and equibiaxial fracture statistics.
The second example discusses fracture statistics for single fibers of

several different lengths.
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INTRODUCTION

According to weakest 1ink theory, the probability of failure
Pf of a specimen of volume V uniformly loaded in simple tension o

must take the form

Pela) = 1 - exp[-V f(0)] (1)

The functional form of f(o) depends on the particular weakest link
theory under consideration. Weibull (Ref. 1,2) not only derived

Eq. (1), but pointed out that f(o) has a simple physical significance;
it is the number of flaws per unit volume having a strength equal to
or less than o. For this reason, he used the symbol n(s). In

addition, he introduced a simple parametric representation of n(c),

n(c) =<:_-éu)=‘k(o-ou)m (2

0

g " m
n(a)=<°—-> =k o (3)

0
Eq. (2) is a special case of Eq. (3) in which a, is taken to be 0.
These equations have been widely used, and experimentalists often

present their results in terms of the Weibull parameters representing

the best fit, rather than giving the original data.

T TS AR




Weibull's theory for polyaxial stress states is based on the
implicit assumption that only the component of stress normal to the
crack plane contributes to its fracture (Ref.9 ). Recently, it has
been shown (Ref.10) that fracture statistics based on more realistic
fracture criteria also imply the Eq. (17-18) relationship, but with
a factor F which depends upon the fracture criterion employed. Since
the proper fracture criterion for mixed loading conditions is not set-
tled yet,we treat F as an unknown parameter.

In an experiment designed to evalute F for equal or biaxial
tension (Ref.11) 10 bars of high strength alumina were fractured in
4-point bending and ten discs were fractured employing concentric
ring loading. The volumes and areas in the test sections of the two
types of specimens were the same and the correction factor relating
uniform tension and pure bending are the same for the uniaxial and
equibiaxial case (Ref.12). Thus the maximum stress values at fracture
can be used to obtain the best values of Weibull's parameters and the

factor F.

The test dat are aiven in Table 1. The sahe data are disnlaved
as a Weibull plot in Fig. 1, where the coordinates are defined by
Eq. (6a,b) with the assumption that 9y " 0. The values of m as obtained

from linear regression analyses of the two sets of data were 14.06 for

the uniaxial case and 14.54 for the equibiaxial case. According to theory,
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the two lines should be parallel and separated vertically by a distance
equal to 2n F. Note that finding a single value for m is not only desirable
fqr grgatgr accuracy, buF gssgn;ia] Fq ;hg dg;grmina;ion qf F.

Employing the relations shown in Eq. (6), Eqs. (13) and (14)
were applied to the data in Table 1 with the following results:

m = 14.296
b = -53.585
a
bB = -52.376

The vertical separation of the two Tines is

b, = b, = 1.208 = £n F (19)

whence

F=.3.35

Reference 7 shows that according to Weibull's theory, F should be approxi-
mately 6.6. Inclusion of shear in the fracture criterion leads to lower
values of F and improved agreement with experiment (Ref. 6).

To convert ba into a Weibull parameter, we note that if the
probability of survival in simple tension is given by Eq. (17), the

probability of survival of a rectangular bar in pure bending is(Ref. 1,9)

PS = exp [- ¥T%:TT cm] (20)
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We note also that the y-intercept is the value of £n £n Ps'1 when

X=2no=00orog=1. Thus

%=&{%hﬂ- (21a)
or
e 2 v+1 exp[ba] (21b)

Using the previously determined values of m and b , and V = 0.442 in3,
we obtain k = 3.70 x 10722 as the value of the second Weibull parameter
when the volume and stress are expressed in cubic inches and ksi

respectively.

Example 2 - Single Fiber Testing

A number of experiments have been carried out to determine the
statistics of fracture of single fibers and the dependence of the

statistics on fiber length. According to Weibull's two parameter repre-

sentation,

P (o) = exp[-L k o"] (22)
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From the preceding discussion, we would expect that Weibull plots
of such data would result in different straight lines for different
lengths, but that the line for LB could be obtained from the line
for Lcl simply by a vertical shift equal to £n (LB/LG). The actual
behavior usually differs somewhat from this due to real world consi-
derations.

First of all, the stressed length of fiber is necessarily
larger than the nominal test section. In the case of high modulus
fibers, the stress in the fibers extends somewhat into the region of
the test fixture due to shear lag effects. Consequently, unless
precautions are taken to exclude all test data corresponding to failure
outside the test section, an effective length A must be added to each
fiber Tength (Ref.13,14 ). This results in a vertical separation equal
to ln[(LB+A)/(La+A)]. In addition, at a sufficiently large tensile
stress, the fiber begins to tear loose from the support structure,
greatly complicating the stress analysis and the interpretation of the
fracture data.

One of the most recent and extensive tests on single fiber
strength was conducted by Barr, Chwastiak and Didchenko (Ref. 15).
These authors have kindly made the original data available to the present
writers. An examination of the data for their high strength carbon

fibers suggests that the process of tearing away from the support
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structure began about o = 2.7 GPa. Accordingly, the analysis undertaken
in the present paper is limited to stress levels below this. The fracture

data for length L = 1.4 mm, 3.2 mm, 10 mm, 20 mm, and 40 mm are contained

in Table 2. In the cases of 3.2, 20 and 40 mm, the data were too numerous
to permit easy plotting so they were reduced by including only every other !
failure.

Applying Eqs. (13) and (14) to these data, we obtained the results
in Table 3. In this Table are listed the various sums appearing in
Eq. (13), the m values that would be obtained for each length considered
individually, and the consolidated m value given by Eq. (13). Also shown
are the intercepts obtained using Eq. (14). Fig. 2 displays on a Weibull
plot the experimental data, the centroids,and the best straight lines
constrained to have a common slope. The dotted lines through the centroids
indicate the results obtained when a linear regression analysis is made
for each length considered individually.

As might be expected, the vertical separation of the lines is
less than that given by simple theory, indicating the presence of an
effective length 4 (Table 4). This must be taken into account as we
turn to the task of finding the value of Weibull's second parameter, k.

To do this, we need to develop some additional theory. Since
the value bae just obtained for the a data y-intercept has not been

required to satisfy the theoretical separation, we look for a value




. which does satisfy this relation. Then, all the intercepts can be
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+s (23)

expressed simply:

b, =bg+s+s (24)
where

§, = &nl(L, +a)/(L  + )] (25)
Thus

¥, mx + bv =mx, + bm0 + sv +s (26)

Equation (26) is the most general expression for straight-line
representations of the Weibull plots of the data which satisfy the
vertical separation requirement. So we now seek to minimize the mean
square discrepancy between the data and the theory. That is, we desire

to minimize J(s,A) by proper choice of s and 4, where

2
J(SQA) =3 Z(y\)i -m Xvi e b\,> (27)
v i

Minimization of J with respect of s can be accomplished

analytically by setting 3J/3s = 0. First we rewrite Eq. (27) in the form
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2
g 5 ?[(yvi L va) + (bv = va)] (28)

When the binomial between the rectangular brackets in Eq. (28) is squared,

we obtain three terms. The first term does not contain s, and is simply

equal to the I of Eq. (10). The cross-term vanishes by virtue of Eq. (12).

As a result
aJ _ 3K
i (29)
where
2
K=z/b -0b 30
v( v VO) (30)

Carrying out the indicated operation and making use of Eq. (24), we obtain

z "v(bv - bvo) =z nv(buo AU T s) =0 (31)

\Y

The value of s satisfying this equation is s = s* where

. z nv(va - Gv)

V
i i (32)
v
v
and the minimum value of K with respect to s is
*
K=z n\,(bm0 *§, =Bt ) (33)

v
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Since 8, is a function of the effective length 4, s* and therefore
K are also functions of A. If we have some independent means of knowing
what A should be, this value should be inserted, together with s', into
Eq. (24) to determine bv. If not, A can be inferred from the data by
minimizing K with respect to A. This can be done graphically by calcu-
lating K for a series of values of A, and taking that value of A for
which K is a minimum. The latter procedure was employed in the present
paper.

Several values were selected for 4 in the neighborhood of 1 mm.

For each value of 4, § was calculated using Eq. (25), s* was obtained

" using Eq. (32), and K was evaluated using Eq. (33). In Fig. 3, K is

plotted against A. The minimum occurs when &4 = &4 = 1.02 mm. The
corresponding value of s* is 0.0105. The y-intercepts bv were then found
using Eq. (24). The results are listed in Table 1.5, and shown in Fig. 2
as inverted triangles on the y axis.

The Weibull parameter k can be obtained using any one of the data

sets as follows. From Eq.

b, = enlk(L, + )] (34a)

or

k = exp(b )/(L +3) = exp(b,q * s*)/(Lu + 1) (34b)




15

The above equation yields k = 3.08 x ]0'3 when lengths are expressed

in millimeters and stresses are in GPa.
DISCUSSION

Combining data sets to obtain improved estimates of the Weibull
parameters involves a combination of standard (though possibly not widely
known) statistical procedures and weakest link theory. The latter is to
some degree in a state of flux and sometimes more than one approach is
possible. Successful application of the technique therefore involves
tailoring the approach to the specific situation with due consideration
for applicable theory. For example, in Example 1, the vertical separation
between the two lines in a Weibull plot is not uniquely specified by
theory, so we determined it by experiment. On the other hand, in Example 2,
theory does give the vertical separations, subject however to an uncer-
tainty resulting from the influence of an unknown effective length a, which
has to be determined experimentally. In Example 2, we employed Weibull's
two-parameter representation because there was no evidence of curvature
in the Weibull plots. If there had been, it would have been advantageous
to employ his three-parameter representation. Choosing 9, to minimize
the least square discrepancy between theory and experiment could be

accomplished graphically, as w#as done in the determination of A.

SV e
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In the case of Example 1, the value found for m based on the use
of all the data was essentially the mean of the values of m determined
for uniaxial and biaxial data treated separately. Since the number of
test points was the same for both cases, one might be led to suspect that

m is an average of mys Mas etc. weighted in some manner to reflect the

B

numbers of data points, N, Ngs etc. That such is not the case can be

8
demonstrated as follows.
It will be recalled that the slope of the v data in a Weibull

plot is given by

m, = p/q, (15)

when only those data are considered, whereas when all the data are

considered the common slope is

m=2zpJ/taq, : (16)

Dividing both the numerator and denominator of the latter equation by

I q, we obtain i

m m
=| -2 B 5
e s )
where
nq,
Q= E-a: (36)

T AN S SR A T S e e
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Thus the ratio of the weighting factor for m, to that for m, is
q,/9,- Since from (15)

q = Ixy - X Zy/n

it is clear that the weighting factors are not determined solely by
the numbers n, other statistical properties of the data are also

involved.

Whether an unfamiliar procedure will be adopted depends largely
on the cost/benefit tradeoff, so a few words on this subject are in
order. In the case of Gaussian distributions, the fractional uncertain-
ties in mean and standard deviation are approximately equal to W
where N is the number of observations. Weibull distributions can be
regarded as skewed Gaussian distributions, so the same rule is roughly
applicable. This means that greater accuracy should result from pooling
the data. In the case of Example 1, the slopes found for the individual
sets of data differed by only about 3% which is far less than the
uncertainty in the final result, and made it necessary for the purposes
of our illustration to use more significant figures than are warranted
by the data. It could be argued that a different example would be
preferable. However, the authors chose in both examples to use real
data readily available to them, since the sole purpose was to demonstrate

a least squares approach to combining data.

|
!
b
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Also it should be noted that, as Robinson has pointed out
(Ref. 6 ) when o, = 0, there is a simpler method of pooling the
data. This is to reduce the stresses in different data sets to
a common basis, as for instance, by normalizing to the average or
the median stress, and then using least squares to determine m.
This is equivalent to using a single point fit for determining
the intercept bv instead of a least squares fit. Obviously, this
is less precise than the least squares approach for obtaining both
m and bv described here, and will not in general lead to the same
result. However, in many cases, the differences will be far less
than the statistical uncertainty N'O's mentioned earlier.

With regard to how much work is involved in processing data
in the manner suggested here, this depends of course on both the
hardware and software employed. The present authors used a card
programmable hand-held computer with a memory capacity sufficient
to store all fracture data and a built-in statistical subroutine
giving the sums appearing in Eq. (15), With such equipment, the time
needed to obtain the results used in Example 1 is of the order of 10
minutes and for Example 2 an hour or two. The time for thinking through
the program the first time must be added to this, something on the order
of an hour should suffice for programming. The authors feel that, 1in
most cases with which they are familiar, the improvement in the results of
the data reduction obtained following procedures such as those recom-

mended herein greatly outweigh the costs in additional effort.
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TABLE 1

Plate Failure Stresses (ksi)
Uniaxial Biaxial
36.696 34.728
38.212 34.874
38.401 35.153
40.203 37.103
41.060 37.673
41.498 37.879
41.595 38.072
43.371 38.826
43.632 41.320
46.196 41.815
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Fiber Failure Stresses (GPa)

L(mm) 1.4(a)

1.67
1.91
2.53
2.69

3.2(8) 10(y)
57 33

0.965 1.24

11 2 1.72

1.66 1.75

1.74 1.82

2.16 1.84

2.32 1.91

2.36 1.94

2.39 1.96

2.45 2.19

2.47 2.23

2.65 2.46

2.49

2.54

2.54

2.59

2.63

2.69

20(6)

30

N NN DD D NN

.651
0.
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.887
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.40
.51
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91
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.20
.35
.40
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Experimental (b o - b,o)

L
Theoretical (¢n — )

L

a

o -
b -4.9044

TABLE 3

Fiber Calculations

-26.5591  -23.7647
70.1282 45.7751
1 17

7.1931 12.6754
5.7603 10.1454
-14.9389 -14.8523
2.2986 4.1287

Data Subset a
h Ly -11.4484
ny? 33.9114
n 4
X 3.0777
zx’ 2.5225
Xy -3.4025
m, 2.6289
? m(consolidated) = 2.6681
*’,

-4.1592 -3.3873

TABLE 4

Vertical Separation

o TR 1,
0 0.7557
0 0.8267
TABLE 5

Optimum y-intercepts

- I 2
-4,3483  -3.3885

-21.8706 -12.9607

41.033

17
8.981
7.045

7 23.8137
15

1 8.0464

9 5.9723

-6.1364 -2.4306
2.3543 2.7308

-2.696

= S
1.5276

1 -2.2953

8 £

2.2188 2.6196

1.9661 2.6593 3.3524

)

-2.7427

€

-2.0741
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FIGIRE 1 Weibull Plots of Fracture Data for
Uniaxial and Equibiaxial Stress States'
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FIGRE 3 Ueibull Plots of 5 Carbon Fiber Lengths.




